

Calorimeter Timing System at CDF

Max Goncharov Texas A&M University

Max Goncharov

In This Talk ...

• Why we built the system

some history, motivations for building EMTiming system at CDF

• System Design

specifications, design, testing, and installation

Performance

efficiency, noise levels calibrations, resolution

• Things we did not expect to measure

beam width

beam remnants,

• Physics we expected to do

new exotic particles searches high luminosity effects on photons

Exotic with Photons

eeγγ₽_TCandidate Event

₽_T = 55 GeV

- In addition to γγ+ Energy Imbalance this (famous) event has two high energy electron candidates
- Very unusual
- Good example of getting an answer which is far more interesting than what you asked for
- How unusual? Total: (1 ± 1) x 10⁻⁶ Events

Max Goncharov

Exotic with Photons

- Another event in the data with properties "similar" to the eegg+Energy Imbalance candidate
- Not part of the "official" gg dataset
- No significant energy imbalance
- Not <u>quite</u> as interesting. Background only at the 10⁻⁴ level
 - 1 in 10 quadrillion
- Again, no good Standard Model explanation

Unpublished confidential result (CDF Internal 1996)

Exotic with Photons

And... another unofficial An $e\gamma\gamma E_t$ Event interesting event!! e^+ : $E_t \approx 50 \text{ GeV}$ γ_2 : $E_t pprox 25 \, \mathrm{GeV}$ Came in <u>before</u> the "official" data taking period started (will never become public) Two photons, one electron and 80 60 40 energy imbalance Preliminary background estimate at the MET=39 GeV 100 3x10⁻³ level from Wgg $\gamma_1: E_t \approx 90 \text{ GeV}$ Clearly similar to the other **CDF** anomalies Unpublished confidential result (CDF Internal 2002)

Why Timing?

- If particle does not have track --> hard to say if it is really from collision or from accidents like cosmic rays or beam halo
- Accidents are not correlated in time with collision, hence timing becomes crucial

h

Reasons to Build

Adding timing on EM Calorimeter would help

- <u>Photon handle</u>: provide a vitally important handle that confirms or denies that all the photons in unusual events are from the primary collision.
- Met handle: for events with large EM energy, full calorimeter coverage reduces the cosmic ray and beam halo background sources and improves the sensitivity for high-P_T physics such as SUSY, LED, Anomalous Couplings etc.
- <u>Search for long-live particles</u> (More on this later)

Max Goncharov

CDF Detector

FERMILAB'S ACCELERATOR CHAIN

http://hepr8.physics.tamu.edu/hep/emtiming/

Max Goncharov

3/11/07

8

EMTiming Project

~2000 Phototubes

- Large system to add to existing (very large) detector
- Effectively put a TDC onto about 2000
 phototubes at CDF
- International collaboration led by Texas A&M
 - INFN-Frascati*
 - Michigan*
 - Chicago*,**
 - Fermilab**
- ~\$1M Run IIb project (parts and labor)
 - Project jointly funded by DOE and the INFN

Max Goncharov

* Engineering support ** Technician support

Schematics

CDF EM Timing Project

The calorimeter at CDF has two parts: CEM ($|\eta|$ <1) and PEM(1< $|\eta|$ <2) We instrumented both with Time readout

ASD channel combines 2 PMT lines In CEM one tower -> one TDC channel In PEM 2 towers -> one TDC channel (15⁰ Phi segmentation) CEM: 480 channels PEM: 384

Combining channels is dictated by crate space restrictions, but on the bright side – if PMT line breaks:

- threshold x 2
- channel still fully efficient

Max Goncharov

System Specs

Needed fully efficient system for all useful photon energies (above 5 GeV)

• Threshold should be as low as needed, but not lower in order to not trigger on noise

photons normally above 20 GeV

- We wanted it low to be able to control missing energy for that we need the threshold as low as possible
- TDC bins information in 1 ns buckets the resolution lower limit is 0.28 ns

System in Pictures

Max Goncharov

Test Stand

Tested by S. Chappa

Signal Path

Fighting Reflections

Max Goncharov

Splitting the Signal

SOLUTION anode provides energy readout has no dynode readout ... modify PMT base? ... cut into the anode line? ...

CAN DO NOT CHANGE ENERGY READOUT, OTHERWISE...

Splitting the Signal

Do not touch charge - do not change energy readout.

Idea, design, and production - University of Chicago (H. Frisch and H. Sanders)

Max Goncharov

Splitting the Signal

Installation

- ~100% Efficient above thresholds (CEM-5, PEM-2.5 GeV)
- System resolution is ~0.6 ns
- Very uniform
- No Noise
- Finished full installation this October (2 years ahead of original Run IIb schedule). Started taking data in January 2005 (1.4 fb⁻¹ and counting)
 - <1% had problems right after installation (most are channel 6 and 9 mixes)
 - Lost only ~1 week of data to weed out all problems
 - Since then we do not have a single high $P_{\rm T}$ event without timing information

M. Goncharov, D. Toback *et al,* submitted to NIM in 2005

Noise – What is It?

Noise - no energy, but there is a TDC hit.

Looked at >10 M events, have yet to see a TDC hit from noise.

Max Goncharov

System Performance

No Data can be left behind - monitor online in real time

System Performance

Messaging the System

Calibrations

Energy Choice

Max Goncharov

Resolution

After slewing calibrations various effects remain:

- when collision happens
- where it happens
- run by run dependence ...

Z->ee sample is perfect to find the resolution Plot time(e1)-time(e2): most of the external contributions cancel out

W->ev sample is good to check for tails

3/11/07 26

Resolution

- Centered at zero, symmetric
- No non-Gaussian tails
- CEM and PEM are the same

Resolution vs Energy

Resolution, Tails

WHEN interaction happens - must have RMS≈1.3 ns It has to be subtracted from the photon time

Max Goncharov

Next Step ...

Ok, we have built the system and calibrated it

Gaussian Resolution - 0.6 ns

- No noise
- 100% efficient
- No non-Gaussian tails

Next I will show you how we

- measure beam width
- look at beam halo in CDF detector
- understand effects of hight Luminosity on photons
- new type of physics

Max Goncharov

Beam Width

p and p-bar bunches have different width => collision time is correlated with the collision location

Average z position of the interaction is given by $Z = \exp(-(z-ct)^2/s^2(p)) \exp(-(z-ct)^2/s^2(pbar))$

s(p) = 55 cms(pbar) = 65 cm

Max Goncharov

High Luminosity

Assigning the right vertex is a tricky business as L is high We can measure how often mistake is made

3/11/07

32

Photon Backgrounds

To study non-collision backgrounds:

- select Photon+MET events
- apply cut **tracks** $\Sigma P_T < 1$ GeV
- plot their timing distribution

We study non-collision photons and learn how to get rid of them

3/11/07

33

Beam Remnants

Max Goncharov

Beam Remnants

3/11/07 35

Beam Remnants

New Type of Physics

Look for non-prompt γ 's that take longer t reach calorimeter. ¹ If the C has a significant lifetime, we can separate the signal from the backgrounds. ¹⁰¹

Delayed Photons

What is Next

We are still coming up with new uses of timing info

- MET model
- Highly Displaced Vertices

New era is coming – LHC ... ILC

New technologies are developed ...

U. of Chicago is developing picosecond resolution system

• next workshop is here, at Fermilab

Backup

Resolution Effects

Calibrations and corrections:

- Energy slewing, applied at production level
- One calibration spans many runs --> need clock shifts
- Correct for Time of Flight (TOF)

Resolution vs Energy

Clock Shifts

Calibrations average over multiple runs CDF clock shifts (temperature, ...) each run has to be corrected by a constant

Use electron track to select configuration

 $|Z_{e track} - Z_{Pr Vertex}| < 1 cm$

$$|Z_{e track} - Z_{Pr Vertex}| > 2 cm$$

Non-Collisions Backgrounds

