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Why large area TOA ASICs? 
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Large Area TOA Applications 

•  Optical rangefinder on-pixel (3D camera) 
•  Fluorescence lifetime imaging microscopy (FLIM) 
•  Fluorescence Correlation Spectroscopy (FCS)  
•  Detection of a scintillation shower upon gamma 

photon detection in PET 
•  High energy physics (HEP) 

4 
© 2018 Edoardo Charbon 



HEP 

•  Extremely harsh conditions 
–  Large ionizing doses, Gamma  
–  Protons, Neutrons  

•  Very demanding specs 
–  TOA resolutions in ns to ps 
–  Ranges of µs to ms 

•  Very low dead times  
–  Events spaced ns 
–  Gevents/s  

•  Large number of points-of-measurement 
–  Thousands to million points 
–  Large surfaces 
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Example (Courtesy: Artur Apresyan) 
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Another Example 

•  In time-of-flight PET one needs  
–  A large number of point-of-measurement 
–  A high timing resolution 

•  Synchronization is extremely important to enable 
coincidence computation  and rejection of singles 
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TDC Basics 
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TDC Objective 

But, in most cases: 

START 

STOP 

Time scale 

Hits 

t 
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TDC Symbol 

START 

STOP 

DATA 
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Basic Definitions 
•  Bin size or LSB – τ (sec) 

–  Minimum distance between time events that can be resolved 
•  Accuracy & precision (sec) 

–  Time-invariant offset 
–  Time-varying drift 

•  Range (sec) 
–  Maximum time difference that can be measured 

•  Conversion rate (MS/sec) 
•  Latency (sec) 
•  Non-linearities 

–  Differential non-linearity (DNL) 
–  Integral non-linearity (INL) 

•  Single-shot accuracy (sec) 
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Input Non-Idealities 

•  Signals are non-Dirac 
–  Non-zero rise time 
–  Non-zero width 

•  START-STOP sequence is not regular 
•  Signals have jitter in  

–  Time 
–  Amplitude 

•  Temperature 
•  Supply variations 
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TDC Non-Idealities 
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DNL, INL 

•  Integral non-ideality (INL) is the integral of DNL 
•  Depending upon definition, starts and ends at 0   
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How to Measure: Density Test 

•  Poisson distributed uniform START generator 
•  Measure statistics of TDC measurements per bin 
•  Normalize to average counts, differences are DNL 

points 

time 

counts 

avg. counts 
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Single-Shot Accuracy (SSA) 

•  Repeat measurement of single time-of-arrival and 
construct histogram 

•  Derive statistics by Gaussian fitting and calculation of 
FWHM or σ or 3σ. 

time 

FWHM 

TOA centroid 
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Optical Tests 

•  Density test: free running SPAD 
•  Single-shot experiment: 

–  Histogram Δti, i=[1…N] 
(time-correlated single-photon counting – TCSPC) 

GAPD or SPAD 

STOP 

DATA 
START 

Clock 
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Figures of Merit 

•  Power, LSB, DNL/INL, SSA, area 
•  Temperature stability 
•  Cross-talk 
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Architectures 
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The Simplest: A Counter 

•  Resolution: τ = 1/fclock

•  Conversion rate = 1/latency
START STOP 

CLOCK DATA 

START 

STOP 

CLOCK 

DATA VALID BUSY IDLE 
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Counter – Register 

•  Advantage: fast counter can be shared among many 
HIT lines 

•  Fast registers easier to build 
RESET 

HIT 

CLOCK 

DATA REGISTER 

COUNTER 
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Delay Chain 

•  Non-Inverting Gates 

 Register 

START 

STOP 

START(Φ0) 

STOP 

DATA VALID BUSY IDLE 

Φ1 

ΦJ+1 

ΦJ 

J J+1 

1 1 1 1 1 0 0 0 

τ 
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Delay Chain 

•  Resolution: τ = delay element 
•  Conversion rate = 1/latency 
•  Latency = N×τ
•  Need a thermometer decoder: Nèlog2(N) 
•  Issues: metastability, bubbles 

  
1 1 1 0 1 0 0 0 
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Phase Interpolator 

•  Non-inverting gates 

 Register 

Clock 

HIT 

CLOCK(Φ0) 

HIT 

DATA VALID BUSY IDLE 

Φ1 

ΦJ+1 

ΦJ 

J J+1 

1 1 1 1 1 0 0 0 

τ 
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Phase Interpolator 

•  Resolution: τ = delay element 
•  Conversion rate = 1/latency 
•  Latency = N×τ
•  Need a thermometer decoder: Nèlog2(N) 
•  Issues: metastability, no bubbles
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Vernier Lines 

•  Resolution: τ = τslow - τfast 
•  Conversion rate = 1/latency 
•  Latency = N×τslow

•  Need a thermometer decoder: Nèlog2(N) 
•  Issues: metastability, matching

START 

STOP 

D D D D D D D D 

τslow 

τfast 

N 1 
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Pulse Shrinking 

•  Resolution: τ = τrise - τfall 
•  Conversion rate = 1/latency 
•  Latency = N×τslow

•  Need a thermometer decoder: Nèlog2(N) 
•  Issues: matching 

START 
N 1 STOP 

START 
STOP 

Asymmetric rise, fall time 
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Ring Oscillators 

•  Resolution: τ = delay element 
•  Conversion rate = 1/latency 
•  Latency = N×τ
•  Need a thermometer decoder: Nèlog2(N) 
•  Issues: metastability, matching, asymmetric load

START 

COUNTER 
To extend range 

τ 

N 1 
STOP 

START 
STOP 
R/O signal 

Uncertainty  
region 
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Actual Implementation 

•  Fully differential 
•  Partial propagation readout  

–  lower oscillation frequency or higher resolution 
–  Rise times and fall times doubles resolution 

•  Invariant load to improve linearity 

M
andai and C

harbon, E
S

S
C

IR
C

11 
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Delay Element Implementation 

•  Uniform rise/fall time 
•  Bias control used for feedback 
•  Positive feedback for speed VDD 

VBIAS 

VDD 

In+ 

In- 

Out+ 

Out- 

In+ In- 

Out+ Out- 
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Asymmetric Rise/Fall Time 

•  E.g. inverter starved cell 
•  Rise time =VDD� Cload/I 

•  Fall time: inverter delay 

VDD 

In Out 

I 
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Semi-Digital TDCs 

•  Determine time difference based on propagation 
through an RC line 

R 

C 

R 

C 

R 

C 
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RC delay chain 

t1 t2 t3 t4 
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Time Difference Amplifier (TDA) 

•  Time differences are multiplied as in successive 
approximation ADCs 

•  Issues: gain stability, jitter  

Mandai and Charbon , ESSCIRC11 
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TDA Base Cell 

Bias Circuit 
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TDA Base Cell 

Bias Circuit Fast Behavior 
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TDA Base Cell 

Bias Circuit Fast Behavior Slow Behavior 
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TDA in a TDC 
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TDA in a TDC 
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Other Composite TDCs 

•  Counter + Phase Interpolator + Vernier 
 Niclass et al., JSSC08 

•  Ring Oscillators + Counters 
 Veerappan et al., ISSCC11 

•  Ring Oscillators + TDA 
 Mandai and Charbon , ESSCIRC11 

 
… and many more  
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Stabilization Techniques 

•  Process, Voltage supply, Temperature (PVT) 
variations eliminated using a delay locked-loop (DLL) 
in clock phase generation 

Clock 

 Register HIT1 

 Register HIT2 

CP LF PFD 

40 © 2018 Edoardo Charbon 



PVT Stabilization in Phase 
Interpolators 

•  DLL running in parallel as a replica of delay chain 
•  Distribute bias to all delay chains 

Clock 

CP LF PFD 

START1 

START2 

REPLICA DELAY CHAIN 
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Nested Stabilization Loops 
Clock 

PD 

PD 

PD 

PD 

P
D

 
T1 

Resolution: T2 – T1 = Δ  

T2 
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Metastability in Ring Oscillators 
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Case 1: Monolithic Fully Parallel 
TDC 
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An Array of 20,480 TDCs  

•  Massive array of pixels comprising 
–  single-photon avalanche diode (SPAD) 
–  TDC (ring oscillator type) 
–  Memory  

•  Readout 
–  Frame rate: 1us 
–  Fully digital  
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TDC Implementation 

Single-gate delay means less power, faster transitions 

Analog techniques allow greater architecture flexibility 

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama,  
D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, ISSCC2011 46 



The MEGAFRAME Pixel 
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The MEGAFRAME Chip 
•  Format: 160x128 pixels 
•  Timing resolution: 55ps 
•  Impulse resp. fun.: 140ps 
•  DCR (median): 50Hz 
•  R/O speed: 250kfps 
•  Size: 11.0 x 12.3 mm2 

TDC 
Ring oscillator (3 bits) + counter (7 bits)  
= 10 bits  48 
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The Megaframe-128 Chip 

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama,  
D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, ISSCC2011 

12.3mm 
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Imager Block Diagram 
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Pixel Architecture 
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Photon Counting 
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Photon Time-of-Arrival 
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TDC Characterization 

55ps resolution, 55ns range 

INL DNL 
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System-level Timing 
Blue laser Red laser 
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INL Uniformity 
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Optical Burst Detection 
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IR Drop in MEGAFRAME 

•  If a large number of TDCs are operating at once, then 
IR drop occurs 

•  As a result the LSB of TDCs changes in space 
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Pitfalls of MEGAFRAME 

•  LSB changes as a function of position of the pixel 
•  There is a dependency to brightness that will change 

the current absorbed 
•  If a VCO is disrupted, the disruption will propagate 

through the array in unpredictable ways 
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You Can Compensate, but… 

e.g. A replica of the pixel VCO can be placed in a PLL 
but mismatch will dominate the error 
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Case 2: Column-Parallel TDC 
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Column-parallel TDC Idea 

S. Mandai and E. Charbon, IEEE Nuc. Sci Symp. (NSS) 2012 62 



Column-parallel TDC Idea 

•  A single VCO distributing the oscillation to all TDCs in 
a line 

•  Pros 
–  Picosecond skew among TDCs 
–  No LSB variability 
–  Good PVT control 

•  Cons 
–  Power & buffers create skews 
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Column-parallel TDC Solutions 
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Column-parallel TDC Uniformity 

© 2018 Edoardo Charbon 67 

192 TDC array 

20 40 80 100 120
TDC address

60 140 160 180
0

1

2

3

4

5

C
om

pe
ns

at
ed

 IN
L 

[L
SB

]



Column-parallel TDC Uniformity 
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Column-parallel TDC Uniformity 
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Column-parallel TDC with Memory 
Features of ‘Piccolo’: 

–  32x32 pixels 
•  FF: 28% 
•  Pitch: 28µm 
•  PDP: 50% (max); 11% (800nm) 
•  DCR: 60cps/pixel 

–  128 TDCs 
•  LSB: 49ps 
•  Range: 400ns 
•  Output: 5.12 Gbps (244 Mphotons/s) 
•  DNL/INL: +/- 0.15 LSB 
•  SPTR: better than 90ps (SPAD dom.) 
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ASIC vs. FPGA 



FPGA vs. discrete ASIC 

•  An application-specific integrated circuit 
(ASIC) is a chip with static circuitry optimized 
for one task 

 
•  A field-programmable gate array (FPGA) is a 

chip whose configuration, specified by a 
hardware description language, can be 
changed many times 
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General Comparison 

FPGA 
•  Fast Development 

Time 
•  Reconfigurable 

–  Lower fault risk 
–  Iterate design 

•  Low non-recurring 
costs 
–  Development 
–  Testing 

ASIC 
•  Lower power 
•  Faster operation 
•  Smaller footprint 
•  Better integration 
•  More flexibility 
•  Low unit costs 

–  High-volume 
applications 
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How to Build a Delay Chain 
From multiple adder’s carry units 
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FPGA Caveats: Clock Regions 

Bad location for a TDC 
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Example FPGA Architecture 
Only digital techniques available with existing cells 
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Virtex-6 FPGA TDC 
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Temperature Dependence 
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Location, Location, Location 
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Chip-to-chip Variation 
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TDC Comparison 

FPGA 
•  Best time 

uncertainty: 20ps 
•  Usage examples 

–  High-energy physics 
–  OpenPET 

ASIC 
•  Best time 

uncertainty: <1ps 
•  Examples 

–  Time-correlated 
imaging 

–  Frequency 
synthesizers for RF 
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FPGA- or ASIC-based TDC? 

•  Consider an FPGA-based TDC if your application: 
–  Is low-volume 
–  Doesn’t require <20ps time uncertainty 
–  Is sensitive to development time, or is being created in 

iterations 
–  Is open source (FPGA-based TDCs are code-based) 
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3D Integration 
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3D ICs – Hybrid Bonding 

J. Mata Pavia, M. Wolf, E. Charbon, JSSC 2015 
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3D ICs – Hybrid Bonding 

•  Sony Corp. (?/?) 
•  STMicroelectronics (65/45nm) 
•  TSMC (45/65nm) 
•  Tezzaron (anything/anything) 

85 
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TSMC BSI + 3D-Stacking 

•  Tier 1: SPADs + microlenses 
•  Tier 2: quenching, recharge, TDCs, multi-core, 

memories, communication unit, I/O A7A1 A2 A3 A4 A5 A6 A8
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TDC Sharing 

•  Virtually zero skew 
•  Preservation of origin of pulse 
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TDC Layer 
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3D-Stacked Chip Micrograph 
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LiDAR Demonstrator 
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Distance Measurements 
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Interference Suppression 
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256x256 3D Image Reconstruction 
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Large TDC Arrays 

Instead of a large VCO distributing the sync to a 
large array of TDCs… build a large array of 
continuously running VCOs  
Pros 

–  Individual FOM improved  
   by 10 log (M) 
–  Synchronization is ~1ps 
–  PVT robust 
–  Robust to local disruptions 

CTRL

PLL

Individual FOM 
improved by 10·log10 (M)

Overall constant FOM
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Mutual Coupling 
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•  Use injection locking for coupling VCOs 
•  The PLL only forces the desired frequency on the VCOs  
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Mutual Coupling 
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Mutual Coupling Measurements 
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Mutual Coupling Measurements 
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Perspectives for 2020 

•  Sub-65nm CMOS 
•  Large, scalable designs (Lego™ approach) 
•  Backside illumination (BSI) 3D IC 
•  Hybrid approaches (InP, GaAs, Ge, polymers) 
•  Cryogenic operation 
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Moore’s Law Will Help 
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Quantum Computing 



The	2012	Nobel	Prize	
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From	bits	to	qubits	
•  A	quantum	bit	or	qubit	is	a	quantum	system	in	which	
the	Boolean	states	0	and	1	are	represented	by	a	pair	of	
mutually	orthogonal	quantum	states	labeled	as	

•  Quantum	properAes:	superposi7on	and	entanglement		

103	

0 , 1
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Semiconductor quantum dots  

Superconducting circuits 
Impurities in diamond or silicon  

Semiconductor-superconductor hybrids 

Source:	L.	Vandersypen,	2017	

Qbits on a Chip 
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Quantum	Computer	Architecture	

•  Carrier	frequency:	100	MHz	–	15	GHz,	70	GHz	
•  Pulses:	10	–	100	ns	

[DiCarlo]	

[L.Vandersypen]	

Control	

Read-out	

Quantum	bits	(qubits)	

Quantum	
processor	
(≪	1	K)	

Classical	
controller	
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Quantum	Computer	Architecture	

•  Carrier	frequency:	100	MHz	–	15	GHz,	70	GHz	
•  Pulses:	10	–	100	ns	

[DiCarlo]	

[L.Vandersypen]	

Control	

Read-out	

Quantum	bits	(qubits)	
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A	Real-life	Quantum	Computer	

4	K	

20	mK	

300	K	

x	8	qubits	x	8	qubits	

77	K	
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Possible	Solu7ons	

•  Proposed	solu7on	
–  Electronics	at	4	K	
–  Only	connecAons	to	4	K	to	20	mK	are	needed	

108	

T	=	20	mK	 T	=	4	K	 T	=	300	K	

Electronic	
Readout	
&	control	

T	=	20	mK	 T	=	4	K	

Electronic	
Read-out	
&	control	

T	=	300	K	

[Ristè	et	al.	2014-15]	

5-qubit	computer	
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Possible	Solu7ons	

•  Proposed	solu7on	
–  Electronics	at	4	K	
–  Only	connecAons	to	4	K	to	20	mK	are	needed	

	
•  Ul7mate	solu7on	

–  Qubits	at	4	K	
– Monolithic	integraAon	
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T	=	20	mK	 T	=	4	K	 T	=	300	K	

Electronic	
Readout	
&	control	

T	=	20	mK	 T	=	4	K	

Electronic	
Read-out	
&	control	

T	=	300	K	

[Ristè	et	al.	2014-15]	

5-qubit	computer	
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Electronic	Readout	&	Control	
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20-100mK 
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Quantum	
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E.	Charbon	et	al.,	IEDM	2016	
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Cooling	Power	Issue	

Courtesy:	Oxford	instruments	

20	mK	

100	mK	

4	K	

70	K	

300	K	

Dilu7on	refrigerator	

T(K)	
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Scalability	Issue	

•  Noise	budget…...........................................	<	0.1nV/√Hz	
•  Power	budget	(for	scalability)….................	<<	2mW/qubit	
•  Physical	dimensions	(for	scalability)….......	30nm	
•  Bandwidth	(for	mulAplexing)…..................	1-12GHz	
•  Kick-back	avoidance	
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Cryogenic	Electronics	



Cryo-CMOS	Technologies	
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Thin	oxide	 Thick	oxide	

Thin	oxide	 Thick	oxide	

Device	Modeling	(160nm)	

R.M.	Incandela	et	al.,	ESSDERC	2017	



Thick	oxide	
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Thin	oxide	 Thick	oxide	

Thin	oxide	

Device	Modeling	(40nm)	

R.M.	Incandela	et	al.,	ESSDERC	2017	



BJTs	and	DTMOS	in	mK	domain	

B
J
T

D
T
M
O
S

4K*	 1K	 40mK	

•  BJTs	can	work	as	bandgap	reference	at	T>77	K	
•  DTMOS	can	be	used	as	bandgap	reference	at	cryo	temperatures	
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To be published  

To be published  

H. Homulle, E. Charbon, F. Sebastiano, JEDS 2018 



Substrate	Resis7vity	
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SPICE	Models,	Farms	

•  We	created	models	for	4K	components	in	Verilog-AMS,	BSIM6,	
PSP	

•  We	are	building	a	complete	model	toolkit	for	40nm	and	
160nm	CMOS	technologies	

•  Models	are	tested	using	cryogenic	component	farms	
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Cryogenic	Circuits	&	Systems	



Cryo-FPGAs 

121	

Harald	Homulle	

•  Artix-7 full operation down to 4K 
•  Other FPGAs only limited to 30K 
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•  All FPGA components are working in the cryogenic 
environment down to 4K 

•  No modifications required 

FPGA	func7onality	

Component Functional Behavior 
IOs ✓ 
LVDS ✓ 
LUTs ✓ Delay change < 5% 
CARRY4 ✓ Delay change < 2% 
BRAM ✓ No corruption (800 kB) 
MMCM ✓ Jitter reduction of roughly 20% 
PLL ✓ Jitter reduction of roughly 20% 
IDELAYE2 ✓ Delay change of up to 30% 
DSP48E1 ✓ No corruption over 400 operations 
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A/D	conversion	on	FPGA	
•  Principle	

–  Time	stamp	the	cross-over	of	input	with	reference	ramp	
–  Use	TDC	for	Amestamping	

•  Booleneck:	we	are	bound	to	the	CMOS	technology	of	the	
FPGA	C LK 	 /

S TOP

S TART

VREF

V IN

VOUT

2 .5 	nsC LK 	 /
S TOP

S TART

VREF
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VOUT
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VOUT
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ADC	on	FPGA	(1.2GSa/s)	

15K 

Signal	bandwidth:	2	MHz	 Signal	bandwidth:	40	MHz	

300K 

H.	Hom
ulle	et	al.,	TCAS	I,	63(11),	1854-1865,	2016			
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ADC	on	FPGA	

15K 

300K 

Signal	bandwidth:	2	MHz	 Signal	bandwidth:	40	MHz	

H.	Hom
ulle	et	al.,	TCAS	I,	63(11),	1854-1865,	2016			
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Cryo-SPADs 
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Cryo-LNA	

•  Standard	160nm	CMOS	
•  500	MHz	Bandwidth	
•  0.1dB	Noise	figure	
•  7K	noise-equivalent	temperature		

©	2018	Edoardo	Charbon	

E.	Charbon	et	al.,	ISSCC	2017	

134	



Cryo-LNA	
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Building	up	

IEEE	Sensors	2016	
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2D	Readout	and	Control	

•  Use	imaging	sensor	
readout	as	inspiraAon	

•  Reduce	number	of	
transistors	(ideally	to	zero)	

•  Use	tunneling	barriers	as	
selectors	

•  (limited)	use	of	3D	
stacking	 ∂	∂	∂	

∂	

∂	

∂	

∂	
20mK	

4K	
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PuZng	Things	in	Context	

©	H.	Homulle	2016	
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Conclusions 
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Take-home	Messages	
•  Large	arrays	of	TDCs	for	TOA	are	necessary	to	a	
number	of	emerging	fields	

•  Modularity	is	an	important	ingredient	to	large	TDC	
arrays	but	one	needs	to	be	aware	of	synchronizaAon,	
reliability,	and	uniformity	issues	

•  3D-stacking	/	3D	integraAon	is	becoming	a	way	of	life!	

•  Quantum	CompuAng	will	need	these	circuits	but	will	
require	cryogenic	operaAon	
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