

SOI Pixel Sensor Process

Lessons Learned from the Development of SOPHIAS, a Sensor for X-ray Free-Electron Laser Experiments

> Takaki Hatsui RIKEN SPring-8 Center

Collaborators

- RIKEN, JASRI
 - All members of SACLA members, especially,
 - Togo Kudo, Yoichi Kirihara, Shun Ono, Kazuo Kobayashi,
 Masahiko Omodani
 - Toshiaki Tosue, Toshiharu Nakagawa, Yoshiro Fujiwara
- Univ. of Hyogo
 - Takeo Watanabe, Nobukazu Teranishi
- KEK
 - Yasuo Arai, and SOIPIX collaboration
- Private Sector
 - Lapis Semiconductor, A-R-Tec Corp.
- Detector Advisory Committee
 - Peter Denes (chair, LBNL), Andrew Holland (The Open Univ.), Gregory Deputch (Fermilab), Yasuo Arai (KEK)

SOPHIAS

- CMOS sensor with Thick Silicon Photodiode
 - = 500 μ m thick
- Schedule
 - Fall 2014
 - in-house test campaign
 - Dual Sensor Detector
 - 3.8 Mpixels
 - Target:
 - Coherent X-ray Imaging

SOPHIAS Sensor

Specifications	SOPHIAS	MPCCD	
Pixel Size	30 µm	50 μm	
Pixel Number	1.9 M	0.5 M	
Frame Rate	60 frame/sec	60 frame/sec	
Noise	150 e-rms	300	
Peak Signal	7 Me- 16-20 Me-/100 um□	4-5 Me- 77 Me-/100 um□	

Raw ADC output : 56 bit/pixel

6.4 Gbps/sensor → 12.8 Gbps/ 2 sensors

This can be reduced by calibration on FPGA, down to 7.3 Gbps/2sensors

Components that can handle 10-20 Gpbs is under developments

What we want to MEASURE?

What we want to MEASURE?

SOI Pixel Detector: an Overview

2013/9/4

Bulk CMOS vs. Fully depleted SOI CMOS

In SOI, Each Device is completely isolated by Oxide.

Radiation Tolerance

SOI is Immune to Single Event Effect

But rather weak for Total Ionization Dose due to thick BOX layer

Introduction of new devices

- Fully Depleted SOI Transistor (FD-SOI Tr):
 - Body Floating Tr
 - Large 1/f noise due to body floating
- Source Tie/Body Tie Transistor
 - Pcell has been introduced.
 - 1/f noise simulation environment has been successfully introduced.
 - Transistor for 2.5 V for high dynamic range sensor

T. Hatsui, RIKEN

Structure of Top Si

1 Poly + 5 Metal MIM Capacitor on 3M

Fully Depleted SOI CMOS Transisters

- High Speed / Low Power
- Immune to Single Event Upset
- Low Temperature Operation
- Analog optimized Source/Body Tie Transistors
 - Suppression of body floating.
- 2.5 V Transistor available for high dynamic range sensors
- 5M with MIM Capacitor on 3M
 - For production of large-area sensor

SOI Pixel Detector: an Overview

2013/9/4

T. Hatsui, RIKEN

SOI (Silicon-on-insulator) Wafer

Smart Cut by SOITEC

Connection Between pn diode and CMOS

8 Inch Floating Zone SOI wafer for full depletion of 500 um

Courtesy of Lapis Semiconductor

	Conventional Process	Improved Process	tool
SOI wafer fabrication	Sup Generation	West House Day	KLA Tencor SP-1
Pixel detector fabrication	#		X-ray Topography

2013/9/4

Backside processing

Backside Processing

- CMP
- Wet etching
- Implant
- Laser annealing
- Al deposition

21

Inverse current

Technology CAD simulation by Kirihara & Hatsui (RIKEN)

2013/9/4 T. Hatsui, RIKEN

Stitching Exposure

Stiching Accuracy

- Width of the Buffer Region can be less than 10um.
- Accuracy of Overwrap is better than 0.025um.

Line Spread Function against X-ray

I pixel = 30 um
Cu Ka irradiation 40 kV 300 uA

2013/9/4

High Reliability in Production

For good chips, defect that do not respond to light: 0 pixel out of 5 chips (9. 5 Mpixels)

X-ray Transmission Image

Source-sample : 200 mm

detector-sample : 600 mm

X-ray : 40 kV, 800 uA

Cu target

X-ray source size : \sim 3 um

Exposure time : 10 msec

Temperature : Room Temp.

Features of SOI Pixel Detector Process

- No mechanical bonding.
- Fabricated with standard semiconductor process only,
 High reliability demonstrated. Low cost expected.
- Fully depleted thick pn diode demonstrated. (500 um)
- Low input capacitance.
- Can be operated in wide temperature (4K-570K) range
- Low single event cross section.
- On Sensor processing with CMOS transistors.
- In-pixel processing with CMOS transistors.

Connection Between pn diode and CMOS

Voltage increase/decrease by biasing

tsui, RIKEN

Buried p-Well (BPW)

KEK & Lapis

Substrate Implantation

- Cut Top Si and BOX
- High Dose

- Keep Top Si not affected
- Low Dose

- Suppress the Back Gate Effect.
- Periphery circuit
 - All issues are solved
- In-pixel use
 - Increase input capacitance
 - Cross-talk remains

Features of SOI Pixel Detector Process

- No mechanical bonding.
- Standard semiconductor process
 - → High reliability demonstrated. Low cost expected.
- Fully depleted thick pn diode demonstrated. (500 um)
- Low input capacitance.
- Can be operated in wide temperature (4K-570K) range
- Low single event cross section.
- On Sensor processing with CMOS transistors.
- In-pixel processing with CMOS transistors.

In-pixel Processing

Functionality

- Non-destructive Reading
- Correlated Double Sampling (CDS)

Easy to implement

- Read while exposure
- Pixel/column Correlated Double Sampling (CDS)

R&D Phase

Complex logic (Counter etc.)

2013/9/4

T. Hatsui, RIKEN

Connection Between pn diode and CMOS

Capacitive coupling between diode and CMOS

IKEN

SOI Pixel Sensor: Current Achievement

Remaining Issues for SOPHIAS

- Cosmetic Quality
- RTS Noise
- Charge Collection Efficiency
- Yield (VDD-GND leakage)

Cosmetic Quality

L6-W2-4 L6-W2-3

- 3 Types of Defects
 - Horizontal White Defects
 - Implant Induced Damage
 - Insufficient Annealing
 - White Spots
 - Aluminum Coating Defects
 - Round Shape leakage Pattern
 - Source not yet identified

Blinker Pixels/Columns

Background Subtracted Image without Correlated Double Sampling

36

Bad Pixel with High Noise

RIKEN SOPHIAS

- Non-Johnson noise distribution.
- Radom Telegraph noise is very large when transistor are under backgate effect.

2013/9/4

T. Hatsui, RIKEN

Charge Collection Efficiency

But at the expense of larger input capaci

Analog VDD-GND Leakage

Stitching is done only for the Guard Ring:

Min. 24 Test Results/Wafer

2013/9/4 T. Hatsui, RIKEN

Comparison with other state-of-art Sensors

How to connect thick pn diode and CMOS?

Many applications.

 Functionality on off-sensor board

How to connect thick pn diode and CMOS?

Many consumer/industry applications. Many variants but generally

- Thin pn photodiode
- Rad. Hard not proven

How to combine thick pn diode and CMOS?

Many scientific applications Large input capacitance gives

- Higher Noise floor
- Slow Analog Amplifier

Current Status

- SOI Pixel Sensor process
 - Process improvements gives reliable performance in many applications.
 - Now it can be deployed for applications with
 - Integration pixel
 - TID < 100 krad on Transistors
 - SOPHIAS for SACLA
 - In-house testing campaign: Fall 2014
 - Cosmetic Quality
 - RTS Noise
 - Charge Collection Efficiency
 - Yield (VDD-GND leakage)

Toward Next Step of SOI Pixel Sensor Technology

New Era of Photon Science

Coherent X-ray

X-ray Free-Electron Laser

Ultimate Storage Ring

Si Technology: The High Photon Energy Limit

What is the challenge in Very Thick Silicon Detector?

Stacked Sensor

- PSF does not degrade because each layer collect signal charge
- Methods
 - Chip with different laser dicing.
 - Wire-bonding to pads on stepped regions
 - TSVs
- CON: Smaller number of pads available for each sensor
- CON: Radiation Hardness

Target TID hardness for Photon Science

- Over 100 Mrad as system is mandatory to compete with other technology, such as hybrid sensors.
 - c.f.) 100 Grad tolerance is European XFEL target.
- Our Goal of TID study
 - <u>Critical review</u> of the current SOI devices and sort out possible options by simulation.
 - BOX implantation of Si will also be investigated.
 - Study of Double SOI is also examined from this perspective.
- Schedule
 - Report will be issued by Summer 2013
 - Due to issues, it will be delayed to Dec. 2013
 - Milestone: April 2014
 - Internal Go/No Go decision in RIKEN

RadTEG

Semi-automatic Radiation by **Automatic Fuse Probing for** Semi-automatic Probing for DC disconnection noise characteristics probe-station measurement

9/4/2013

T. Hatsui, RIKEN

Semi-automatic Probe-station for TID Study

Designed by Hyogo Univ. Developed by Hyogo Univ. and RIKEN.

Semi-automatic Probe-station for TID Study: Control

Semi-automatic Probe-station for TID Study: Operation

Radiation by Semi-automatic probe-station

Fuse disconnection

Automatic Probing for DC characteristics

Semi-automatic Probing for noise measurement

Automatic Prober at Lapis

- IV curves
 - 1 week for one wafer with different operation conditions.

Semi-automatic prober for 1/f noise at **RIKEN**

- Performance
 - -120dBV²/Hz@1Hz
 - -140dBV²/Hz@10Hz
 - -160dBV²/Hz@1KHz
 - -170dBV²/Hz@100KHz
- Typical Measuring time
 - 1 min for one device.
- **Instrument Components**
 - Prober
 - SUMMIT 12000B-AP, or equivalent
 - **Device Analyzer**
 - Agilent B1500A or equivalent
 - 10 MHz to 7 GHz Signal Source Analyzer
 - Agilent E5052B, or equivalent
 - 1/f Noise measurement System
 - Agilent E4725A, or equivalent

64

Rad. Hard SOI Pixel Sensor Process

Current FD-SOI and its extension (incl. Double SOI) is not proven for High TID applications > 100 Mrad.

and, simultaneously

- Small Input Capacitance
- Small Cross Talk
- Systematic Radiation and Testing Tools are under developments.
 - RadTEG
 - Evaluation of current Transistors
 - Test bench for Quantitative Analysis with Simulation
 - Semi-automatic Probing station for radiaiton
 - Automatic Prober for RadTEG at Lapis
 - DC characteristics
 - Semi-automatic prober for 1/f noise at RIKEN

Current FD-SOI Tr under 1 Mrad regime is just like trees In typhoon

68

- For these applications, extensive discussion on possible options is mandatory.
 - We welcome your inputs.

T. Hatsui, RIKEN

Investment on Semiconductor Process

Wafer Process

Advanced Post Processing

Packaging

ASIC design

Readout Circuit

Digital Data handling

FPGA control logics

Mechanics

Software

Summary

SOI Pixel Sensor process

- Process improvements gives reliable performance in many applications.
- Now it can be deployed for applications with
 - Integration pixel
 - TID < 100 krad on Transistors
- SOPHIAS for SACLA
 - In-house testing campaign: Fall 2014

Toward Next Step

- Transistor Upgrade
 - Radiation hardness
 - Small Input Capacitance
 - Small Cross Talk

T. Hatsui, RIKEN

70

Our Target

- Use minimum "feedback" for radiation hardness
 - Counter measure such as proposed double SOI is not favored in photon science, where
 - Radiation dose pattern not predictable
 - One Tr damaged, the adjacent Transistor is 0 rad
 - Reduction of the maintenance cost is high priority.
- Our target
 - To provide process options that meets
 - TID hard transistors without minimum counter measures.
 - Extensive process/device process simulations to be carried out so to minimize unwanted side effects.

