

CHOUGH, the **C**anary **Ho**sted-**U**p**g**rade for **H**igh-order adaptive optics

Daniel Hölck Centre for Advanced Instrumentation Durham University, UK

Atmospheric perturbations cause distorted wavefronts

Adaptive Optics(AO)

AO is a technology used to improve the performance of optical systems by reducing the effect of wavefront distortion.

Optical Schematic of an AO system

Deformable Mirror(DM)

Shack-Hartmann Wavefront Sensor

Image

http://www.rpcphotonics.com

Zernike Polynomials

Guide Stars

Questions?

CANARY

- 4.2m William Herschel Telescope
- EAGLE is a multi-object 3D spectroscopy instrument currently under design for the 42m E-ELT
- Multi-Object Adaptive Optics (MOAO)
- Emulate a single channel of the proposed E-ELT MOAO instrument, EAGLE

CHOUGH

- The choughs are medium-sized <u>corvids</u>; the red-billed chough is 39–40 centimetres (15–16 in) in length with a 73–90 centimetres (29–35 in) wingspan
- These birds are mountain specialists, although red-billed chough also uses coastal sea cliffs in Ireland, **great Britain**, and Brittany, feeding on adjacent short grazed grassland or machair;[17] the small population on **La Palma**,

CHOUGH Goals

 Investigate high-quality PSF correction with <u>Strehl ratios ≥ 0.5</u>

 Optimize the AO system so that the best Strehl ratios can be achieved in the <u>visible</u> part of the spectrum (≥ 600-900 nm)

Dual-Mirror AO System

- Low-order optical aberrations are the most common and are corrected using a high-stroke, lowresolution mirror
- High-order aberrations are corrected using a lowstroke mirror

Low-order DM

High-order DM

- The MEMS-DM is used to correct highorder (low-stroke) aberrations.
- It is the restricted stroke of this DM that requires operation with the LODM

Atmospheric Dispersion Compensator(ADC)

Shack-Hartman WFS

Calibration and Alignment Wavefront Sensor (CAWS)

Narrow Field Science Imager(NFSI)

• The Narrow Field Science Imager is a conventional camera with integrated filter wheels (broad and narrow regions) and 7" FoV.

FIN

Requirement	Value	Comment
Science wavelength range (nm)	510-880	Silicon-based detector limit, V,R,I-bands
Residual WFE after correction (nm RMS)	< 100 (req.) < 70 (goal)	I-band, error corresponds to a Strehl ratio of > 0.5 / > 0.75.
Required contrast ratio (I-band)	> 1000:1	Based on non-coronographic imaging at a distance of 0.5".
Field of view (arcsec)	4"	Determined by the maximum iso-planatic angle, covers the controlled frequencies of the MEMS-DM.
Limiting magnitude (m _v)	7.7	Based on initial simulation results for control of the PSF at a radius of 0.2".
Tip-tilt correction stability (mas rms)	< 5	5% of the WHT theoretical PSF FWHM in I-band.
Pupil motion stability (% pupil diameter)	0.3	10% sub-aperture mis-registration.
Zenith angle limit	< 50°	To be finalized by ADC performance w.r.t. atmospheric air-mass.
CANARY static aberrations (nm rms)	< 300	Existing measurements suggest this is satisfied.
HOAO frame rate (Hz)	> 1000	Can be lower depending on conditions, but camera limit is 1.5kHz.

Parameters	Values	Comments
Telescope pupil (m)	4.2, 1.2 (primary, secondary)	Secondary mirror spiders
		irrelevant at the simulation
		resolution.
r0/L0 (m)	0.12/30	Realistic seeing at WHT.
Wind velocities (average, m/s)	21	3 Layers
Turbulent layers (km & fraction)	0(55%), 4(22%), 10(22%)	
WFS sampling	30 imes 30	HOWFS sampling.
WFS camera format	128×128 pixels	2 pixel guard-band.
WFS read noise (e-)	0.1	EM-CCD detector.
m WFS~FoV	4"	DM-controlled frequencies.
WFS wavelength	R-band	
PSF wavelength	I-band	

AO systems

Open loop

Advantages:

Simpler because error need not be computed.
Can not go unstable.

Disadvantages:

 Must be very accurately calibrated.
Any inaccuracy or disturbance can greatly affect control of the system.

Sthrel Ratio

• It is defined as the ratio of the PSF peak intensity to that of the "perfect" PSF

$$SR \approx e^{-\sigma_{\varphi}^2}$$

$$SR \equiv \frac{S(\vec{\alpha} = 0)}{S_P(\vec{\alpha} = 0)}$$