GHz hard X-ray imaging

Challenges in efficiency, timing and rates

Zhehui Wang

P-25, Los Alamos National Lab

(Collaboration discussion with MIT/LL, LLNL)

LANL Collaborators (growing):

C. W. Barnes, E. Guardincerri, J. Kapustinsky, K. Kiwatkowski,

A. V. Klimenko, S.-N. Luo and C. L. Morris

(May. 16, 2013)

UNCLASSIFIED

LA-UR-13-23661

Z. Wang Slide 1

Outline

LANL MPDH/MaRIE HX imaging requirements

- The efficiency challenge
- The ps challenge
- The GHz challenge
- The GB challenge
- Detectors today
- Paths forward

No solution exists today. Very exciting time for detector/instrument developers

UNCLASSIFIED

Z. Wang Slide 2

MaRIE XFEL

Experimental time scales for MPDH

 $\tau_{1} \sim 1 \text{ ps (laser pulse/gating)}$ $\tau_{2} \sim 300 \text{ ps (3 GHz or faster)}$ $\tau_{3} \sim 1 \text{ }\mu\text{s}$ $\tau_{4} \sim 10 \text{ }m\text{s}$ Input: C. W. Barnes Light source Detector Technology Detector Technology / cost Source/Facility cost

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Z. Wang Slide 4

R&D Challenges for MPDH HX imaging

The "efficiency + ps challenge"

- High-efficiency (>50%) for 42 keV X-rays
- fast time response (300 ps or less)

The "GHz challenge"

- Sub-ns (~ 3 GHz or faster) frame rate X-ray cameras
- Movie length, 10 to 10,000 frames

The "GB challenge"

- High data rate, 6 x 10¹⁶ bit of data per second = 3 x 10⁹ (frame per second) x 10⁶ (number of pixels) x 20 bit.
- Large amount of data, up to 10 GB per 1 μ s event.

UNCLASSIFIED

Z. Wang Slide 5

Energy resolution desirable

Separation of coherent from incoherent photons, background reduction

UNCLASSIFIED

Z. Wang Slide 6

MPDH/MaRIE HX imaging requirements

- The efficiency challenge for HX (42 keV)
- The ps ("sub-ns") challenge
- The GHz challenge
- The GB challenge
- Detectors today
- Paths forward

UNCLASSIFIED

Z. Wang Slide 7

Commercial X-ray detectors (Si dominance)

State-of-the-art hybrid CMOS-based detection (Si dominance)

The Crab Nebula (M1)

NGC2683 Spiral Galaxy

The Hercules Cluster (M13)

1Kx1K H1RG-18 HyViSI

2Kx2K H2RG-18 HyViSI

(too slow for MPDH)

4Kx4K H4RG-10 HyViSI

UNCLASSIFIED

Z. Wang Slide 9

Small group R&D, industrial activities (many more)

New scintillators

(Zhu et al.)

BS

pulses

NATIONAL LABORATORY

EST 1943

Frequency-Resolved Optical Gating

(Trebino et al.)

UNCLASSIFIED

SNSPD (Gol'tsman et al)

Molecular detectors (Kemtko et al; Tahara et al)

Delayline detectors

(http://www.surface-concept.de/)

Z. Wang Slide 10

Source-specific development

CS-PAD Synchrotron/XFEL

CZT detector

pnCCD Synchrotron/XFEL/Astronomy

Large-area ps photodetector HEP

20 arcmin FoV B arcmin FoV B arcmin FoV B B arcmin FoV

Astronomy/Synchrotron/XFEL

CsI(TI) array Commercial (RMD)

Z. Wang Slide 11

Outline

Paths forward

- Peer groups
- Sensor development strategies
 - Si
 - High-Z semiconductors
 - Scintillators

UNCLASSIFIED

Z. Wang Slide 12

Major US X-ray detector R&D groups ← major sources

Beyond CS-PAD: Mixed Mode PAD

PAD Tile Format	6 modules, each 128 x 128 pixels	
Pixel Size	150 μm x 150 μm	
Max Frame Rate	1,000 Hz	
Data Rate	400 MB/s	
Read Noise (rms)	0.15 X-ray [8 keV] / pix	
Sensor	300 um silicon, fully depleted	
Well Capacity	> 3 x 10 ⁷ X-rays/pix/frame	

Reconfigurable Tiled Array

Credit: Sol M. Gruner Cornell Univ.

*Chip development: collaboration with Area Detector Systems Corp.

UNCLASSIFIED

Z. Wang Slide 14

Tremsin's team (Space Sci. lab/UC Berkeley)

Synchrotron beamline detectors: ARPES – angular resolved photoelectron emission spectroscopy

Thermal neut. radiography

COS detector installed on last Hubble repair mission

UNCLASSIFIED

Z. Wang Slide 15

ANL and collaborators– MCP technologies

Phosphor screen image of a 33mm diameter borosilicate/ALD MCP with 20µm holes

512x512 of 55 um pixels (2x2 Timepix ASIC)

EST 1943

✓ MCP technology
✓ ASIC's (Timepix, U. Hawaii)
✓ ALD and other processes

Credit: A. Tremsin, UC Berkeley.

UNCLASSIFIED

Z. Wang Slide 16

European detector R&D < ESRF, XFEL

European XFEL @ DESY

UNCLASSIFIED

Z. Wang Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Si

- HPAD -> AGIPD (DESY)
- DEPFET-APS -> DSSC (DESY)
- LPD (UK group)
- LAMBDA (Medipix-based)

High-Z

- Germanium
- Galapad (GaAs)
- HiZPAD (CdTTe)
- XNAP

European XFEL Si imagers

	DSSC	LPD	AGIPD
# Pixels	$1k \times 1k$	$1k \times 1k$	$1k \times 1k$
Pixel size	$200 \mu m \times 200 \mu m$	$500 \mu m \times 500 \mu m$	200μm × 200μm
Sensor	DEPFET array	Si-pixel	Si-pixel
Dynamic range	>10⁴ ph	2×10^4 ph (10 ⁵ ph)	2×10^4 ph
Noise	~15 × 10⁻³ph	0.21ph (0.93ph)	~45 × 10 ⁻³ ph
	~50e	700e (3100e)	~150e
Concept	DEPFET nonlinear	Multiple gain paths	Adaptive gain switching
	gain compression	On-chip ADC	(preset gain option)
	Per-pixel ADC		
Storage	8bit DRAM	3-fold analogue	2bit digital + analogue
Storage depth	≥256	512	>200
Challenges	Linearity &	Preamplifier:	Dynamic gain switching
	calibration	noise, dynamic range &	Charge injection
	In-pixel ADC	PSRR	Analogue storage
	DRAM refresh	Feedback discharge	Pixel area
	Power budget	Analogue storage	
	Pixel area		
	Radiation hardness		

U. Trunk, ASICs for XFEL Detectors, CMOS ET Workshop (2009)

UNCLASSIFIED

Z. Wang Slide 18

Hydrid CMOS: Flexible, Fast, bright Future

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Z. Wang Slide 19

ASIC architectures

G. Rossi *et al* (1999)

UNCLASSIFIED

Z. Wang Slide 20

ASIC Fabrication: *shares* CMOS technology

- IBM cmrf8sf DM (130nm CMOS)
- Chosen by DSSC, AGIPD, LPD
- De-facto standard for LHC upgrades
- Advanced over cmos6sf (0.24 um)
- Well established for layout based radiation hardening
- Permits sufficiently high integration density
- (dual) MIMCAPS can be employed as a (fallback) solution for storage caps.
- Long-term availability
- Uncertainties do exist (IBM, threshold \$50 M)

U. Trunk, ASICs for XFEL Detectors, CMOS ET Workshop (2009)

UNCLASSIFIED

Z. Wang Slide 21

Fast electronics & data storage challenges: it takes time

MPU/ high performance ASIC half pitch and gate length trends

UNCLASSIFIED

Z. Wang Slide 22

Sensor challenges

Materials

- Standard (Si, Ge)
- High impurities (charge trapping)
- Defect densities
- Stoichiometric imbalances
- Radiation damage

Structures

- Natural
 - Crystalline
 - Amorphous
- Fabrication technologies
- Signal transport
- Integration
- Testing

R. L. Bates et al, NIM A 392 (1997) 269.

UNCLASSIFIED

Z. Wang Slide 23

1 yr. ago...

- Maximizing electron mobility
- Lower temperature
- Higher electrical bias
- Ultimate "drift" limit ~10⁸ cm/s?

Wang et al, RSI (2012)

UNCLASSIFIED

Z. Wang Slide 24

EST.1943

Response time <- **electron drift time**

UNCLASSIFIED

Z. Wang Slide 26

Semicondutor down-selection

Elemental: C, Si, Ge Binary (IV-IV): SiGe Binary (III-V): InP, GaAs Binary (II-VI): CdTe, HgTe Binary (I-VII):AgCl Ternary: HgCdTe, CZT Quarternary: InGaAsP

14

Si

32

Ge

Germanium 72.64

58000 28 0955 15

P

33

As

Arcanic

08156.11

Phosphorus 30.973782

UNCLASSIFIED

Z. Wang Slide 27

3D structures \leftarrow reducing charge collection time

150 - 300 ns \rightarrow 5 - 30 ns \rightarrow 300 ps

D. Eckstein , DPG spring meeting, Munich (2009).

Z. Li , BNL Seminar, Apr. 20 (2011).

UNCLASSIFIED

Z. Wang Slide 28

Scintillators ... the list is growing

Credit: R-Y Zhu, Caltech

Csl

Csl(Na)

CsI(TI)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Nal(TI)

LaBr3(Ce)

Columnar structures for efficient light guide

R & D

NATIONAL LABORATORY

EST 1943

Reduction to practice

C. V. Falub et al, Science 335 (2012) 1330.

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Z. Wang Slide 30

Summary

- Requirements of MPDH HX imaging unprecedented
 - Efficiency, ps, GHz, GB

• No technology comes close in overall performance

- Efficiency < 10% for HX @ 42 keV
- Time/frame rate off by ~ x 300
- Phased development approach
 - ~ 100 ns (today) \rightarrow 5 30 ns \rightarrow 300 ps
- Multi-pronged approach for sensor material & 3D structure
 - Si
 - High-Z semiconductors
 - Fast scintillators

Very exciting time for detector/instrument developers

UNCLASSIFIED

Z. Wang Slide 31

