
 

  Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

GHz hard X-ray imaging 

Z. Wang    Slide 1 

Challenges in efficiency, timing and rates 

Zhehui Wang 
P-25, Los Alamos National Lab 

 
(Collaboration discussion with MIT/LL, LLNL) 

 
LANL Collaborators (growing):   

C. W. Barnes, E. Guardincerri, J. Kapustinsky, K. Kiwatkowski,  
A. V. Klimenko, S.-N. Luo and C. L. Morris  

 
(May. 16, 2013) 

LA-UR-13-23661 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Outline 

 LANL MPDH/MaRIE HX imaging requirements 
• The efficiency challenge 
• The ps challenge 
• The GHz challenge 
• The GB challenge 

 Detectors today 

 Paths forward 
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No solution exists today. 
Very exciting time for detector/instrument developers 
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MaRIE XFEL 
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12 GeV 5 - 42 keV 

80 - 100 m 

 

Shadow/contact imaging 

Input: Rich Sheffield, Richard Sandberg 

Phase contrast Holography/CXDI 

A. Snigirev et al, RSI (1995)   
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Experimental time scales for MPDH 
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τ1 ~ 1 ps (laser pulse/gating) 
τ2 ~ 300 ps (3 GHz or faster)  
τ3 ~ 1 µs   
τ4 ~ 10 ms 

Light source 
Detector Technology 
Detector Technology / cost 
Source/Facility cost 

 

 

1 us 

300 ps 
 

10 ms 

1 ps 

Input: C. W. Barnes 
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R&D Challenges for MPDH HX imaging 

 The “efficiency + ps challenge”  
• High-efficiency (>50%) for 42 keV X-rays 
• fast time response ( 300 ps or less) 
 

 The “GHz challenge”  
• Sub-ns (~ 3 GHz or faster) frame rate X-ray cameras  
• Movie length,  10 to 10,000 frames 

 

 The “GB challenge”  
• High data rate, 6 x 1016 bit of data per second = 3 x 109 (frame per second) x 106 

(number of pixels) x 20 bit. 
• Large amount of data,  up to 10 GB  per 1 µs event . 
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Energy resolution desirable 
Separation of coherent from incoherent photons, background reduction 
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     Compton continuum 
(incoherent scattered photon) 

Coherent photon peak 

0.38 keV (10 keV) 

8.2 keV (50 keV) 
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Outline 

 MPDH/MaRIE HX imaging requirements 
• The efficiency challenge for HX (42 keV) 
• The ps (“sub-ns”) challenge 
• The GHz challenge 
• The GB challenge 

 Detectors today 

 Paths forward 
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Commercial X-ray detectors (Si dominance) 
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CMOS 

CCD 
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State-of-the-art hybrid CMOS-based detection (Si dominance) 
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(too slow for MPDH) 
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Small group R&D, industrial activities  (many more) 
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SNSPD 

(Gol’tsman et al) 

Molecular detectors 

(Kemtko et al; Tahara et al) 

New scintillators 

(Zhu et al.) 

Frequency-Resolved Optical Gating 

(Trebino et al.) 
Delayline detectors 

(http://www.surface-concept.de/) 
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Source-specific development 
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CS-PAD 
Synchrotron/XFEL 

pnCCD 
Synchrotron/XFEL/Astronomy 

DEPFET 
Astronomy/Synchrotron/XFEL 

CZT detector 
NIF 

Large-area ps photodetector 
HEP 

CsI(Tl) array 
Commercial (RMD) 
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Outline 
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 Paths forward 
• Peer groups 
• Sensor development strategies 

— Si 
— High-Z semiconductors 
— Scintillators 
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Major US X-ray detector R&D groups  major sources 
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Map produced by 
Cartographic Res. Lab 
Univ. Alabama 

 

Cornell/CHESS 

   
BNL/NSLS,NSLS2 

SLAC/LCLS 

LBL/ALS,NGLS 
UC Berkeley/Astronomy 

LLNL/NIF   
ANL/APS 
FNL/HEP 

 
UC Irvine (pRad) 

 
LANL/pRad, NIF, MaRIE 

0.1  1.0  10  100  keV 
 

42 keV (MPDH) 

 MIT/LL 
 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Beyond CS-PAD: Mixed Mode PAD   
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Credit: Sol M. Gruner 
            Cornell Univ. 
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Tremsin’s team ( Space Sci. lab/UC Berkeley) 
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Synchrotron beamline detectors: 
ARPES – angular resolved  

photoelectron emission spectroscopy 

COS detector  
installed on last Hubble repair mission 

Thermal neut. 
radiography 

1 mm 
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ANL and collaborators– MCP technologies 
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512x512 of 55 um pixels 
   ( 2x2 Timepix ASIC) 

Phosphor screen image of a 33mm diameter 
borosilicate/ALD MCP with 20µm holes 

 MCP technology 
 ASIC’s (Timepix, U. Hawaii) 
 ALD and other processes 

Credit: A. Tremsin, UC Berkeley. 
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European detector R&D   ESRF, XFEL 

 Si 
• HPAD -> AGIPD (DESY) 
• DEPFET-APS -> DSSC (DESY) 
• LPD (UK group) 
• LAMBDA (Medipix-based) 

 High-Z 
• Germanium 
• Galapad (GaAs) 
• HiZPAD (CdTTe) 
• XNAP 
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European XFEL @ DESY 
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U. Trunk, ASICs for XFEL Detectors, CMOS ET Workshop (2009) 

European XFEL Si imagers 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

 

Hydrid CMOS: Flexible, Fast, bright Future 
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Sensor layer (diode) 

Bump bonding 

ASIC(CMOS) 

X Ray 
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ASIC architectures 
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Storage Output 

G. Rossi et al (1999) 

C1-C8: 130 fF 
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ASIC Fabrication: shares  CMOS technology 

 IBM cmrf8sf DM (130nm CMOS) 

 Chosen by DSSC, AGIPD, LPD 

 De-facto standard for LHC upgrades 

 Advanced over cmos6sf (0.24 um) 

 Well established for layout based radiation hardening 

 Permits sufficiently high integration density 

 (dual) MIMCAPS can be employed as a (fallback) solution for storage 
caps. 

 Long-term availability 

 Uncertainties do exist (IBM, threshold $50 M) 
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U. Trunk, ASICs for XFEL Detectors, CMOS ET Workshop (2009) 
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Fast electronics & data storage challenges: it takes time 
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From: ITRS 2011 report 

16 nm 

MPU/ high performance ASIC half pitch and gate length trends 
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Sensor challenges 

 Materials 
• Standard (Si, Ge) 
• High impurities (charge trapping) 
• Defect densities 
• Stoichiometric imbalances 
• Radiation damage 

 Structures 
• Natural 

— Crystalline 
— Amorphous 

• Fabrication technologies 
• Signal transport 
• Integration 
• Testing 
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C. M. Buttar, NIM A 395 (1997) 1. 

Bias (V) 

R. L. Bates et al, NIM A 392 (1997) 269. 

200 um 
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1 yr. ago… 

• Maximizing electron mobility 
• Lower temperature 
• Higher electrical bias 
• Ultimate “drift” limit  
 ~108 cm/s? 
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Wang et al, RSI (2012) 
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Efficient absorption thickness    High Z 
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(InSb) 

C 

Si 

Ge (GaAs) 

CdTe 42
 k

eV
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Response time  electron drift time 
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A. Owens, Compound Semiconductor Radiation Detectors (2012). 

105 m/s x 50 ps 
= 5 um 

Ee = 0.03 eV 

105 m/s x 1 ns 
= 100 um 

3 x108 m/s x 1 ns 
= 300 mm 
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Semicondutor down-selection 

 Si 

 GaAs, Ge 

 InP 
Z. Wang    Slide 27 

 
  

 

 

 

Elemental: C, Si, Ge 
Binary (IV-IV): SiGe 
Binary (III-V): InP, GaAs 
Binary (II-VI): CdTe, HgTe 
Binary (I- VII):AgCl 
Ternary: HgCdTe, CZT 
Quarternary: InGaAsP 

 

 



  

 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

3D structures    reducing charge collection time 
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D. Eckstein , DPG spring meeting, Munich  (2009). 
Z. Li , BNL Seminar, Apr. 20  (2011). 

 150 - 300 ns  5 - 30 ns   300 ps 
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Scintillators … the list is growing 
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Time (ns) Time (ns) 

Credit: R-Y Zhu, Caltech 
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Columnar structures for efficient light guide 
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 R & D 

 Reduction to practice 

http://www.scint-x.com RMD (Scintillator injection technology) 

Capillary diameter: 25 – 2000 um 

C. V. Falub et al, Science 335 (2012) 1330. 

http://www.scint-x.com/�
http://www.scint-x.com/�
http://www.scint-x.com/�
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Summary 
 Requirements of MPDH HX imaging unprecedented 

• Efficiency, ps, GHz, GB 

 No technology comes close in overall performance 
• Efficiency  < 10% for HX @ 42 keV 
• Time/frame rate off by ~ x 300 

 Phased development approach 
• ~ 100 ns (today)   5 - 30 ns   300 ps  

 Multi-pronged approach for sensor material & 3D structure 
• Si 
• High-Z semiconductors 
• Fast scintillators 
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Very exciting time for detector/instrument developers 
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