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Introduction
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Machine Learning in HEP
• Learning optimized nonlinear functions of many inputs for 

performing difficult tasks from (real or simulated) data


• Many successes in HEP: identification of b-quark jets, Higgs 
candidates, particle energy regression, analysis selection, …

• Neural network based on  
high-level features

Jet, 
particles

Tag Info tagger

Reconstruction chain: Jet tagging

vertices

Data/MC
corrections

…

…

…

user

Task to find the particle ID of a jet, e.g. b-quark

Key features:
• Long lifetime of heavy 

flavour quarks
• Displaced tracks, …
• Usage of ML standard 

for this problem

11
b-jet efficiency
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Machine Learning in HEP
• Learning optimized nonlinear functions of many inputs for 

performing difficult tasks from (real or simulated) data


• Many successes in HEP: identification of b-quark jets, Higgs 
candidates, particle energy regression, analysis selection, …

11.1 Significance of the signal and its strength 41

0

0.5

1

1.5

2

2.5

3

3.5

4
 (7 TeV)-1 (8 TeV) + 5.1 fb-119.7 fb

CMS
γγ →H 

0.34 GeV ±  = 124.70Hm
0.23−
0.26+ 1.14=µ

310×

 (GeV)γγm
110 115 120 125 130 135 140 145 150

-100

0

100

200
B component subtracted

S/
(S

+B
) w

ei
gh

te
d 

ev
en

ts
 / 

G
eV S/(S+B) weighted sum

Data

S+B fits (weighted sum)
B component
σ1±
σ2±

Figure 19: Diphoton mass spectrum weighted by the ratio S/(S + B) in each event class, to-
gether with the background subtracted weighted mass spectrum.

Table 5: Values of the best-fit signal strength, µ̂, when mH is treated as an unconstrained pa-
rameter, for the 7 TeV, 8 TeV, and combined datasets. The corresponding best-fit value of mH,
bmH, is also given.

µ̂ bmH (GeV)
7 TeV 2.22+0.62

�0.55 124.2
8 TeV 0.90+0.26

�0.23 124.9
Combined 1.14+0.26

�0.23 124.7

section times the relevant branching fractions, relative to the SM expectation. In Fig. 20 the
combined best-fit signal strength, µ̂, is shown as a function of the Higgs boson mass hypothesis,
both for the standard analysis (left) and for the cut-based analysis (right). The two analyses
agree well across the entire mass range. In addition to the signal around 125 GeV, both analyses
see a small upward fluctuation at 150 GeV, which is found to have a maximum local significance
of just over 2 s at mH = 151 GeV—slightly beyond the mass range of our analysis.

The best-fit signal strength for the main analysis, when the value of mH is treated as an un-
constrained parameter in the fit, is µ̂ = 1.14+0.26

�0.23, with the corresponding best-fit mass being
bmH = 124.7 GeV. The expected uncertainties in the best-fit signal strength, at this mass, are
+0.24 and �0.22. The values of the best-fit signal strength, derived separately for the 7 and
8 TeV datasets, are listed in Table 5. For the cut-based analysis the corresponding value is
µ̂ = 1.29+0.29

�0.26 at bmH = 124.6 GeV, and for the sideband background model analysis the value
measured is µ̂ = 1.06+0.26

�0.23 at bmH = 124.7 GeV. These values are shown in Table 6 together with
the expected uncertainty, and the corresponding values for the main analysis.

The uncertainty in the signal strength may be separated into statistical and systematic con-
tributions, with the latter further divided into those having, or not, a theoretical origin: µ̂ =

ML algorithms used in every 
aspect of Higgs discovery:  

energy regression 
S/B discrimination,  

… 

Typically applied offline,  
not online (trigger-level)

arXiv:1407.0558

https://arxiv.org/abs/1407.0558
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever
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HEP Latency Landscape

1 ns 1 us 1 s1 ms

HLTL1 Trigger Offline

CPUsFPGAs

CMS:
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Field-Programmable Gate Array
• Flexible: re-programmable 

interconnects between 
configurable logic blocks and 
embedded components 

• LUTs (logic), 
Flip-Flops (registers),  
DSPs (arithmetic), 
Block RAMs (memory)


• High Throughput: O(100) 
optical transceivers running at 
O(15) Gbs


• Massively parallel


• Low power (relative to CPU/
GPU)

Typical modern FPGA 
(Kintex UltraScale): 

1.3 M FFs 
700k LUTs  
5500 DSPs 

2200 BRAMs

ALL FPGA ARCHITECTURE 16

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

Typical modern FPGA: 

(Kintex ultrascale+)

1.3M FFs 

700k LUTs

5500 DSPs 

2200 BRAMs

O(50-100) optical 
transceivers 

running at  

~O(15) Gbs

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits 

Contain array of logic blocks used to configure low level 
operations (bit masking, shifting, addition) 

Logic blocks wired together through routing channels 

Support highly parallel and pipelined algorithm 
implementations with guaranteed latency

 9

FPGA diagram

Logic block

Flip-flop

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Look-up 
table

Logic cell
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CPUs, GPUs, FPGAs, and ASICs
• FPGAs are the middle ground of latency, energy 

efficiency, and flexibility 

9

How are they different?

ARCHITECTURES 41

Source: Bob Broderson, Berkeley Wireless group

GPUs

FPGAs

* GPUs still best option for training

* FPGAs generally much more power efficient

ASICs

CPUs
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Motivation for High-Level Synthesis (HLS)

4

Untimed C code

An 8-bit counter

+1    0

clk

rst

c 8

1

0
q

module dut(rst, clk, q); 
input rst; 
input clk; 
output q; 
reg [7:0] c; 

always @ (posedge clk) 
begin

if (rst == 1b’1) begin
c <= 8'b00000000; 

end
else begin

c <= c + 1; 
end

assign q = c;
endmodule

RTL Verilog

vs.

HLS

uint8 dut() { 
static uint8 c; 
c+=1; 

}

Motivation for High-Level Synthesis (HLS)

4

Untimed C code

An 8-bit counter

+1    0

clk

rst

c 8

1

0
q

module dut(rst, clk, q); 
input rst; 
input clk; 
output q; 
reg [7:0] c; 

always @ (posedge clk) 
begin

if (rst == 1b’1) begin
c <= 8'b00000000; 

end
else begin

c <= c + 1; 
end

assign q = c;
endmodule

RTL Verilog

vs.

HLS

uint8 dut() { 
static uint8 c; 
c+=1; 

}

High-Level Synthesis
• FPGA development is becoming more accessible, with tools 

like High-Level Synthesis: untimed C code with additional 
directives that is synthesized into RTL Verilog/VHDL
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Industry Trends

Microsoft

 
Google

Apple

Intel

• Industry is moving toward custom hardware and FPGAs to 
quickly apply ML algorithms


• Already being used as backend accelerators for  
Bing web searches, Siri queries, and more…
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•  hls4ml: neural network translation library for HLS


• Support for common ML workflows and architectures


• Tunable configuration for different use cases


• Focus on L1 trigger as 1st application


• What can we do in < μs on one FPGA?

12

hls4ml

L1 Trigger40 MHz

100 kHz
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Case Study and 
Design Exploration

13
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Case Study: Jet Substructure

• Illustrative example: not necessarily the most realistic for 
L1 today, but lessons are generic
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• Groomed mass separates top, W/Z, and quark/gluon

• top/gluon have greater multiplicity than W/Z/quark

• ECF N2β=1 separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Jet Substructure Inputs
mass

ECFs

multiplicity
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Case Study: Jet Substructure
• 5 output multi-classifier 


• Does a jet originate from a 
quark, gluon, W/Z boson, 
top quark?


• Fully connected network


• 16 expert inputs 


• jet mass, multiplicity, ECFs
16 inputs

64 nodes, ReLU

32 nodes, ReLU

32 nodes, ReLU

5 outputs, softmax

better

auc = area under ROC curve 
(100% is perfect, 20% is random)
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Neural Network

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)
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Neural Network

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition
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Neural Network

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition

NN = multiplications, additions, and 
pre-computed activation functions
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ML in FPGAs?
FPGA

How many resources? DSPs, LUTs, FFs? 
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64
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Efficient Neural Networks
• Compression


• Maintain same performance while removing redundant synapses and neurons


• Quantization


• 32-bit floating point math is overkill


• 20-bit, 18-bit, 8-bit, …? fixed point, integers?  binarized?

For further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

https://arxiv.org/abs/1510.00149
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compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision 


reuse/pipeline

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware 
design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

22

Design Exploration
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Training
Example: https://github.com/hls-fpga-
machine-learning/keras-training/


(Some useful stuff for compression too)

json_string = keras_model.to_json()
keras_model.save_weights(‘my_model_weights.h5’)

Training/Compression

Export Model

json

https://github.com/hls-fpga-machine-learning/keras-training/
https://github.com/hls-fpga-machine-learning/keras-training/
https://github.com/hls-fpga-machine-learning/keras-training/
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Training for Compression

• Many possible schemes for compression


• Simple, iterative version:


• Train with L1 regularization (down-weights unimportant 
synapses) 

• Remove X% of weights and retrain


• Repeat

Train  
with L1 Prune

1st iteration

Our approach is a simplified version of iterative parameter pruning and retraining [59, 70] with
L1 regularization, where the loss function L is augmented with an additional penalty term,

L�(w) = L(w) + �kwk1 . (2.3)

L1 regularization is known to produce sparse models, provide built-in feature selection [71], and
is a readily available option in many machine learning workflows. In principle, training with Lp

regularization with 0  p < 1 [62] may improve the sparsity and performance of the model, but these
regularizers are not always easy to implement. While we take this simplified approach, we note that
there are other, more sophisticated, approaches to compression in the literature which may yield even
better results.

We train the model with L1 regularization with � = 10�4. We then sort the weights based on
their absolute value relative to the maximum absolute value of the weights in a particular layer. With
L1 regularization we see two separate sub-populations of weights with one at smaller values and one
at larger values. Weights falling below a certain percentile, corresponding to the smaller-value sub-
population, are removed. Next, we retrain the model again with L1 regularization while constraining
the previously pruned weights to remain zero. We stop after seven iterations of this procedure at which
point the sum of the pruned weight sub-population is 3% of the original summed weight population
and the model is compressed by 70% (3051 weights pruned out of 4389 original weights and biases).
Fig. 6 illustrates this procedure. The top left of Fig. 6 shows the distribution of the weights before
compression. From the top left to the bottom right, the arrows indicate the following steps of the
pruning and retraining procedure and the resulting distribution of weights is shown. Finally, in the
bottom right, we present the final distribution of the weights after compression. We observe no
significant change in the pruned network performance when compared with the original.

Quantization

Quantized [59, 72–75] and even binarized [76–79] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent wasting FPGA resources and incurring additional latency. In hls4ml
we use fixed point arithmetic, which uses less resources and latency than floating point arithmetic.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing
a loss in performance [75], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
underflow/overflow in the weights, at least three bits should be assigned above the binary point — two
to envelope the largest absolute value and one for the sign. The neuron values, xm, and intermediate
signals in the FPGA used to compute them may require more bits to avoid underflows/overflows. We
determine the number of bits to assign below the binary point by scanning physics performance as a
function of the bit precision.

– 11 –

kwk1 =
P

i |wi|
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Train  
with L1 Prune

…
1st iteration

……

Retrain 
with L1 Prune

7th iteration

70% reduction 
with no loss in 
performance

Training for Compression
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Other Compression Schemes
• Train with Lp (0≤p<1) regularization 

to promote sparsity (though 
difficult to optimize)


• as p → 0, Lp → L0


• “Optimal brain damage:” 
use second derivatives of loss 
function to rank parameter 
saliency (rather than using 
parameter magnitude) 


• Weight-sharing using k-means 
clustering to identify weights to 
share


• Huffman coding (optimal prefix)

Figure 1: Lp norm penalties for a parameter ✓ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
✓. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for ✓ 6= 0.

is achieved by transforming continuous random variables (r.v.s) with a hard nonlinearity, the hard-
sigmoid. We further propose and employ a novel distribution obtained by this procedure; the hard
concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al., 2016; Jang
et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the effectiveness
of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN )} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters ✓ of a hypothesis (e.g. a neural network) h(·;✓):

R(✓) =
1

N

✓ NX

i=1

L
�
h(xi;✓),yi

�◆
+ �k✓k0, k✓k0 =

|✓|X

j=1

I[✓j 6= 0], (1)

✓⇤ = argmin
✓

{R(✓)},

where |✓| is the dimensionality of the parameters, � is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates ✓⇤. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of �. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters ✓; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of ✓. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-
differentiability and combinatorial nature of 2|✓| possible states of the parameter vector ✓. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

2.1 A GENERAL RECIPE FOR EFFICIENTLY MINIMIZING L0 NORMS

Consider the L0 norm under a simple re-parametrization of ✓:

✓j = ✓̃jzj , zj 2 {0, 1}, ✓̃j 6= 0, k✓k0 =

|✓|X

j=1

zj , (2)

2

Louizos et al. 2017

 arXiv:1712.01312

LeCun et al. 1989

NIPS 250

kwkp = (
P

i |wi|p)1/p

Han et al. 2015

arXiv:1510.00149

https://arxiv.org/abs/1712.01312
https://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://arxiv.org/abs/1510.00149
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Translation
python keras-to-hls.py -c keras-config.ymlTranslation

Inputs

Config

• IOType: parallelize or serialize


• ReuseFactor: how much to parallelize 


• DefaultPrecision: inputs, weights, biases
my-hls-test/:
build_prj.tcl  
firmware  
myproject_test.cpp
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Network Tuning: Parallelization

28

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each
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HLS Project
vivado_hls -f build_prj.tclBuild HLS project

#################
#    HLS4ML     #
#################
open_project -reset myproject_prj
set_top myproject
add_files firmware/myproject.cpp -cflags "-I[file normalize ../../nnet_utils]"
add_files -tb myproject_test.cpp -cflags "-I[file normalize ../../nnet_utils]"
add_files -tb firmware/weights
open_solution -reset "solution1"
set_part {xcku115-flvf1924-2-i}
create_clock -period 5 -name default
csim_design
csynth_design
cosim_design -trace_level all
export_design -format ip_catalog
exit

produces an “IP core” 
that can be dropped into 

a full firmware design
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Study Results

30

Xilinx Vivado 2017.2 
Clock frequency: 200 MHz 
FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)
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Compression

31

• Big reduction in DSP usage with pruned model!


• ~15 clocks @ 200 MHz = 75 ns inference

75 ns
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Quantization

32

• General strategy: avoid overflows in 
integer bit then scan the decimal bit 
until reaching optimal performance

Full performance  
with 8 fractional bits

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance 
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance 
at 8 fractional bits

FP
G

A 
AU

C
 / 

Ex
pe

ct
ed

 A
U

C
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Resource Usage and Timing

33

reuse = 1 
<16, 6> bits BRAM DSP FF LUT

Total 13 954 53k 36k

% Usage ~0% 17% 3% 5%

time
15 clocks [75 ns]

16 × 64 
64 × 32

32 × 32
32 × 5

softmax (5)
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Resource Usage with Reuse

34

• Tuning the throughput with reuse factor reduces the DSP usage


• Steady increase of LUTs and FFs vs. bit precision


• Spikes in LUTs at the DSP precision transitions (not present in 
final implementation)
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Timing with Reuse

35

• Additional latency introduced by reusing the multipliers


• Initiation interval scales with the reuse factor
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Implementing the HLS Design
• How optimal is the HLS design (vs. RTL)?  


• For DSPs, HLS seems close to “back-
of-the-envelope” optimal estimate


• HLS is good for quickly getting a 
conservative estimate of resources

36

“place and route”

• Power decreases as 
throughput is decreased 
(by increasing reuse 
factor)
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• HLS estimates are conservative compared to final 
implementation 

• No spikes in LUTs at the DSP precision transitions in 
implementation

HLS vs. Implementation

37 Note: different model 
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Summary and 
Outlook

38
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A�������: Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics
capabilities through the improvement of the real-time event processing techniques. Machine learning
methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a
whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware
has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low,
sub-microsecond latency requirements that are unique to particle physics. We present a case study for
neural network inference in FPGAs focusing on a classifier for jet substructure which would enable,
among many other physics scenarios, searches for new dark sector particles and novel measurements
of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop
a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models
in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a
drastic decrease in firmware development time. We map out FPGA resource usage and latency versus
neural network hyperparameters to identify the problems in particle physics that would benefit from
performing neural network inference with FPGAs. For our example jet substructure model, we fit well
within the available resources of modern FPGAs with a latency on the scale of 100 ns.
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• Beta version is live! arXiv:1804.06913


• Next steps:


• Applications? 

• Bigger networks?

39

hls4ml Status
hls-fpga-machine-learning.github.io/hls4ml

https://arxiv.org/abs/1804.06913
https://hls-fpga-machine-learning.github.io/hls4ml/
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• Current BDT for CMS Level-1 
muon pT assignment based 
on defection angles (ΔΦ, Δθ) 
and other variables


• Implemented using a  
1 GB pre-computed LUT 
that stores the BDT output 
for every the possible 
input (compressed to 30-
bits)


• CMS studying NN 
implemented with hls4ml, 
which allows additional 
inputs (e.g. 68 variables with 
18 bits each = 1228 bits!) and 
improved pT resolution

L1 Muon Trigger Application

40

ACAT 2017 BDT L1T

https://indico.cern.ch/event/567550/papers/2629686/files/6172-acat_bdt_l1t.pdf


Javier Duarte I hls4ml 41

Big Convolutional Neural Networks
• Main task is computer vision/image recognition


• Control the number of parameters by baking in assumptions 
like locality and translation invariance to share weights 
within a layer

8 layers 
62 million parameters  

(94% are in the FC layers)

AlexNet (2012)

Krizhevsky, et al.

NIPS 4824

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Big Convolutional Neural Networks
• Main task is computer vision/image recognition


• Control the number of parameters by baking in assumptions 
like locality and translation invariance to share weights 
within a layer

GoogLeNet (2014)

22 layers 
5 million parameters 

Szegedy et al.

arXiv:1409.4842

https://arxiv.org/abs/1409.4842
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 CNNs in Neutrino Experiments

9/1/17 Evan Niner | Deep Learning in NOvA

Convolutional Neural Networks

• Showing a electron neutrino interaction and feature maps extracted from the 
convolutional kernels after the first inception module

• The strong features extracted are the shower as opposed to the muon track

32

FEATURE MAPS

:
:

Evan Niner 
Deep Learning in NoνA


arXiv:1604.01444

e-

νe

• Readout detector as a (multidimensional) image 

• Shown to be effective at classifying NoνA neutrino events

• Adapted from GoogLeNet Can we implement 

these on an FPGA?

https://arxiv.org/abs/1604.01444
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HEP Latency Landscape

1 ns 1 us 1 s1 ms

HLTL1 Trigger OfflineCMS:

DUNE: DAQ Offline

Leads to O(ms) latencies
Tools to infer big networks:  
• Use BRAM to store weights 
• Increase reuse factor ×1000 
• Additional compression: weight 

sharing, Huffman coding 
• Multi-pumping DSPs

Pure FPGAs
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HEP Latency Landscape

1 ns 1 us 1 s1 ms

HLTL1 Trigger Offline

Acceleration with FPGAsPure FPGAs

CMS:

DUNE: DAQ Offline

Tools to infer big networks:  
• Use BRAM to store weights 
• Increase reuse factor ×1000 
• Additional compression: weight 

sharing, Huffman coding 
• Multi-pumping DSPs

Natural application:  
accelerate offline workflows

Leads to O(ms) latencies
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SqueezeNet
• 6-bit SqueezeNet smaller than 32-bit AlexNet by a factor of 500 

and achieves the same accuracy (Han et al. 2016)

• Fits on one FPGA with on board memory (Gschwend 2016)

• Others have also demonstrated CNNs on FPGAs

Han et al. 2016

arXiv:1602.07360

Gschwend 2016


ZynqNet

Under review as a conference paper at ICLR 2017

Table 2: Comparing SqueezeNet to model compression approaches. By model size, we mean the
number of bytes required to store all of the parameters in the trained model.

CNN architecture Compression Approach Data
Type

Original !
Compressed Model

Size

Reduction in
Model Size
vs. AlexNet

Top-1
ImageNet
Accuracy

Top-5
ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.2% 80.3%
AlexNet SVD (Denton et al.,

2014)
32 bit 240MB ! 48MB 5x 56.0% 79.4%

AlexNet Network Pruning (Han
et al., 2015b)

32 bit 240MB ! 27MB 9x 57.2% 80.3%

AlexNet Deep
Compression (Han

et al., 2015a)

5-8 bit 240MB ! 6.9MB 35x 57.2% 80.3%

SqueezeNet (ours) None 32 bit 4.8MB 50x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 8 bit 4.8MB ! 0.66MB 363x 57.5% 80.3%
SqueezeNet (ours) Deep Compression 6 bit 4.8MB ! 0.47MB 510x 57.5% 80.3%

to SqueezeNet, using 33% sparsity6 and 8-bit quantization. This yields a 0.66 MB model (363⇥
smaller than 32-bit AlexNet) with equivalent accuracy to AlexNet. Further, applying Deep Compres-
sion with 6-bit quantization and 33% sparsity on SqueezeNet, we produce a 0.47MB model (510⇥
smaller than 32-bit AlexNet) with equivalent accuracy. Our small model is indeed amenable to
compression.
In addition, these results demonstrate that Deep Compression (Han et al., 2015a) not only works
well on CNN architectures with many parameters (e.g. AlexNet and VGG), but it is also able to
compress the already compact, fully convolutional SqueezeNet architecture. Deep Compression
compressed SqueezeNet by 10⇥ while preserving the baseline accuracy. In summary: by combin-
ing CNN architectural innovation (SqueezeNet) with state-of-the-art compression techniques (Deep
Compression), we achieved a 510⇥ reduction in model size with no decrease in accuracy compared
to the baseline.

Finally, note that Deep Compression (Han et al., 2015b) uses a codebook as part of its scheme for
quantizing CNN parameters to 6- or 8-bits of precision. Therefore, on most commodity processors,
it is not trivial to achieve a speedup of 32

8 = 4x with 8-bit quantization or 32
6 = 5.3x with 6-bit

quantization using the scheme developed in Deep Compression. However, Han et al. developed
custom hardware – Efficient Inference Engine (EIE) – that can compute codebook-quantized CNNs
more efficiently (Han et al., 2016a). In addition, in the months since we released SqueezeNet,
P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
2016). Specifically, Ristretto does computation in 8 bits, and it stores parameters and activations in
8-bit data types. Using the Ristretto strategy for 8-bit computation in SqueezeNet inference, Gysel
observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
types.

5 CNN MICROARCHITECTURE DESIGN SPACE EXPLORATION

So far, we have proposed architectural design strategies for small models, followed these principles
to create SqueezeNet, and discovered that SqueezeNet is 50x smaller than AlexNet with equivalent
accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
space. We divide this architectural exploration into two main topics: microarchitectural exploration
(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
end-to-end organization of modules and other layers).

In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.

6Note that, due to the storage overhead of storing sparse matrix indices, 33% sparsity leads to somewhat
less than a 3⇥ decrease in model size.
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P. Gysel developed a strategy called Ristretto for linearly quantizing SqueezeNet to 8 bits (Gysel,
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observed less than 1 percentage-point of drop in accuracy when using 8-bit instead of 32-bit data
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So far, we have proposed architectural design strategies for small models, followed these principles
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accuracy. However, SqueezeNet and other models reside in a broad and largely unexplored design
space of CNN architectures. Now, in Sections 5 and 6, we explore several aspects of the design
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(per-module layer dimensions and configurations) and macroarchitectural exploration (high-level
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In this section, we design and execute experiments with the goal of providing intuition about the
shape of the microarchitectural design space with respect to the design strategies that we proposed
in Section 3.1. Note that our goal here is not to maximize accuracy in every experiment, but rather
to understand the impact of CNN architectural choices on model size and accuracy.
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Backup Slide: FPGA Utilization

Table 5.2.: Resource Requirements and FPGA Utilization for the ZynqNet Accelerator when synthe-
sized for the Zynq XC-7Z045.

resource Block RAM DSP Slices FF LUT

used 996 739 137k 154k
available 1090 900 437k 218k

utilization 91 % 82 % 31 % 70 %

Resource Utilization

The final ZynqNet FPGA Accelerator contains NPE = 16 computational units, which concur-
rently operate on the calculation of different output feature maps. Each computational unit
contains a pipelined 3◊3 Multiply-Accumulate unit with 9 separate floating-point multipli-
ers and an adder tree for the summation of their products. This results in a total of 144
floating-point multipliers and 128 floating-point adders which constitute the computational
core of the accelerator. The computational units are fed from on-chip caches. In total, up to
1.7 MB CNN parameters (432k single-precision floating-point weights) and 133 kB image
data are buffered in the on-chip Block RAM. When synthesized for the Zynq XC-7Z045
FPGA, this configuration results in the resource requirements and utilization figures shown
in table 5.2. The fact that more than 90 % of all Block RAM resources and more than 80 % of
the DSP slices are used, shows that the design has been properly fitted to the FPGA resources
available.

Maximum Clock Frequency

Despite the high resource utilization and the resulting long routing paths, the ZynqNet FPGA
accelerator can still be synthesized for an adequate clock frequency of fmax = 200 MHz. This
is mostly because the architecture fully distributes the computation as well as all the required
data onto the different computational units. There are no inter-dependencies between
the individual computational units, even their results are accumulated separately. This
results in mostly local routing and few global interconnections, which can all be sufficiently
pipelined.

Operation Schedule

The last factor which determines the system throughput is the efficiency of the operation
schedule. The nested loops used in the algorithm allow (in principle) a fully pipelined
operation where a new pixel (or channel) is fetched and processed in every clock cycle.
There are no data dependencies or feedback loops which would hinder pipelining within a
single layer.

Pipeline Flushing Issue in Vivado HLS 2016.2

However, the state machine which determines the operation schedule is automatically
derived from the high-level software model in Vivado HLS during synthesis. As described in
section 4.4.4, Vivado HLS currently has an issue with the derivation of an efficient operation

5.2 ZynqNet FPGA Accelerator Performance 69

• Optimizations: SqueezeNet to ZynqNet CNN

• resize layers to 2N

CNN Optimization: FPGA
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• remove Pooling

Additional optimization for FPGA

FPGA resources

https://arxiv.org/abs/1602.07360
https://github.com/dgschwend/zynqnet/tree/master/zynqnet_report.pdf
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CPU

8 GB

128 MB

8 lanes, 8 Gbps per lane

FPGA Co-Processor Acceleration Card
Leverage recent 
advances/trends 

in industry
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Cloud Scale

TOR

TOR TOR

TOR

L1 L1

Expensive 
compression

Deep neural 
networks

Web search 
ranking Bioinformatics

Web search 
ranking

L2

TOR

(a) (b)

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—
placing a layer of FPGAs between the servers’ NICs and
the Ethernet network switches. Figure 1b shows how the
accelerator fits into a host server. All network traffic is routed
through the FPGA, allowing it to accelerate high-bandwidth
network flows. An independent PCIe connection to the host
CPUs is also provided, allowing the FPGA to be used as a local
compute accelerator. The standard network switch and topol-
ogy removes the impact of failures on neighboring servers,
removes the need for non-standard cabling, and eliminates the
need to track the physical location of machines in each rack.

While placing FPGAs as a network-side “bump-in-the-wire”
solves many of the shortcomings of the torus topology, much
more is possible. By enabling the FPGAs to generate and
consume their own networking packets independent of the
hosts, each and every FPGA in the datacenter can reach
every other one (at a scale of hundreds of thousands) in
a small number of microseconds, without any intervening
software. This capability allows hosts to use remote FPGAs for
acceleration with low latency, improving the economics of the
accelerator deployment, as hosts running services that do not
use their local FPGAs can donate them to a global pool and
extract value which would otherwise be stranded. Moreover,
this design choice essentially turns the distributed FPGA
resources into an independent computer in the datacenter,
at the same scale as the servers, that physically shares the
network wires with software. Figure 1a shows a logical view
of this plane of computation.

This model offers significant flexibility. From the local
perspective, the FPGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be
managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers
not using all of their local FPGA resources can donate
those resources to the global pool, while servers that need
additional resources can request the available resources on
remote servers. Failing nodes are removed from the pool
with replacements quickly added. As demand for a service
grows or shrinks, a global manager grows or shrinks the pools
correspondingly. Services are thus freed from having a fixed
ratio of CPU cores per FPGAs, and can instead allocate (or
purchase, in the case of IaaS) only the resources of each type
needed.

Space limitations prevent a complete description of the
management policies and mechanisms for the global resource
manager. Instead, this paper focuses first on the hardware
architecture necessary to treat remote FPGAs as available
resources for global acceleration pools. We describe the com-
munication protocols and mechanisms that allow nodes in
a remote acceleration service to connect, including a proto-
col called LTL (Lightweight Transport Layer) that supports
lightweight connections between pairs of FPGAs, with mostly
lossless transport and extremely low latency (small numbers
of microseconds). This protocol makes the datacenter-scale
remote FPGA resources appear closer than either a single local
SSD access or the time to get through the host’s networking
stack. Then, we describe an evaluation system of 5,760 servers
which we built and deployed as a precursor to hyperscale
production deployment. We measure the performance charac-
teristics of the system, using web search and network flow
encryption as examples. We show that significant gains in
efficiency are possible, and that this new architecture enables a
much broader and more robust architecture for the acceleration

https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/ 
A. Caulfield, et al., Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016).

Microsoft Catapult

Machine Learning Forum 
Andrew Putnam  

(Microsoft Research)  
May 14 @ 1pm>100 k FPGAs can 

communicate to each other
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• We introduce an HLS-based software/firmware compiler for 
ultra low-latency applications 


• Case study with jet substructure in Level-1 trigger


• Tunable configuration for a broad range of use cases


• Upcoming features:


• More network architectures (CNN, RNN, etc.)


• Support for Altera/Intel Quartus HLS


• FPGAs (with support from industry/cloud computing) may help 
to accelerate HEP computing workflows


• Exciting times ahead at the intersection of machine learning, 
custom hardware, and high energy physics

49

Summary and Outlook
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Backup

50
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CNNs on FPGAs
• NIPS 2017 Demo: https://docs.google.com/presentation/d/

1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/
edit#slide=id.p3


• Snowflake: arXiv:1708.02579


• DNNWeaver: http://act-lab.org/artifacts/dnnweaver/


• fpgaConvNet: http://cas.ee.ic.ac.uk/people/sv1310/
fpgaConvNet.html


• Caffeine

https://docs.google.com/presentation/d/1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/edit#slide=id.p3
https://docs.google.com/presentation/d/1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/edit#slide=id.p3
https://docs.google.com/presentation/d/1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/edit#slide=id.p3
https://docs.google.com/presentation/d/1mTqsm5TronnB8MFD6yyq3CSPCV4bfck_aQ-ericM9cQ/edit#slide=id.p3
https://arxiv.org/abs/1708.02579
http://act-lab.org/artifacts/dnnweaver/
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html
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Recurrent Neural Network

LSTM (1997)

• Main task is language processing, time sequence prediction


• LSTM layers allow learned information to persist; network 
can learn long-term dependences in sequences
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HLS Study Details
• Xilinx Vivado 2017.2


• Clock frequency: 200 MHz


• FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104)


• A note on inputs:


• We assume network inputs have already been computed


• Not a good assumption in the jet substructure case with “expert” 
features


• Convolutional and recurrent networks which more naturally operate 
on “raw” features are in development


• Note: resource usage comes from HLS estimates


• Discussion on differences w.r.t. implementation later

53
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Logic Cell 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HLS clock period [ns]
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Meeting HLS Target Timing
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• Implementation timing meets HLS target in v2017.2 for clock 
periods ≥ 11 ns


• Implementation timing meets HLS target in v2016.4 for clock 
periods ≥ 4 ns
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Kintex® UltraScale™ FPGAs
Device Name KU025(1) KU035 KU040 KU060 KU085 KU095 KU115

Logic Resources

System Logic Cells (K) 318 444 530 726 1,088 1,176 1,451

CLB Flip-Flops 290,880 406,256 484,800 663,360 995,040 1,075,200 1,326,720 

CLB LUTs 145,440 203,128 242,400 331,680 497,520 537,600 663,360

Memory Resources

Maximum Distributed RAM (Kb) 4,230 5,908 7,050 9,180 13,770 4,800 18,360 

Block RAM/FIFO w/ECC (36Kb each) 360 540 600 1,080 1,620 1,680 2,160

Block RAM/FIFO (18Kb each) 720 1,080 1,200 2,160 3,240 3,360 4,320 

Total Block RAM (Mb) 12.7 19.0 21.1 38.0 56.9 59.1 75.9

Clock Resources
CMT (1 MMCM, 2 PLLs) 6 10 10 12 22 16 24 

I/O DLL 24 40 40 48 56 64 64

I/O Resources

Maximum Single-Ended HP I/Os 208 416 416 520 572 650 676 

Maximum Differential HP I/O Pairs 96 192 192 240 264 288 312

Maximum Single-Ended HR I/Os 104 104 104 104 104 52 156 

Maximum Differential HR I/O Pairs 48 48 48 48 56 24 72

Integrated IP 

Resources

DSP Slices 1,152 1,700 1,920 2,760 4,100 768 5,520 

System Monitor 1 1 1 1 2 1 2

PCIe® Gen1/2/3 1 2 3 3 4 4 6 

Interlaken 0 0 0 0 0 2 0 

100G Ethernet 0 0 0 0 0 2 0 

16.3Gb/s Transceivers (GTH/GTY) 12 16 20 32 56 64(2) 64

Speed Grades

Commercial -1 -1 -1 -1 -1 -1 -1

Extended -2 -2 -3 -2 -3 -2 -3 -2 -3 -2 -2 -3

Industrial -1 -2 -1 -1L -2 -1 -1L -2 -1 -1L -2 -1 -1L -2 -1 -2 -1 -1L -2

Package

Footprint(3, 4, 5, 6)
Package Dimensions 

(mm)
HR I/O, HP I/O, GTH/GTY

A784(7) 23x23(8) 104, 364, 8 104, 364, 8

A676(7) 27x27 104, 208, 16 104, 208, 16

A900(7) 31x31 104, 364, 16 104, 364, 16

A1156 35x35 104, 208, 12 104, 416, 16 104, 416, 20 104, 416, 28 52, 468, 28

A1517 40x40 104, 520, 32 104, 520, 48 104, 520, 48

Footprint 

Compatible with 

Virtex® UltraScale 

Devices

C1517 40x40 52, 468, 40

D1517 40x40 104, 234, 64

B1760 42.5x42.5 104, 572, 44 52, 650, 48 104, 598, 52

A2104 47.5x47.5 156, 676, 52

B2104 47.5x47.5 52, 650, 64 104, 598, 64

D1924 45x45 156, 676, 52

F1924 45x45 104, 520, 56 104, 624, 64
Notes: 
1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section in DS890, UltraScale Architecture and Product Overview.
2. GTY transceivers in KU095 devices support data rates up to 16.3Gb/s.
3. Packages with the same package footprint designator, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. See the migration table for details on inter-family migration.
4. Maximum achievable performance is device and package dependent; consult the associated data sheet for details.
5. For full part number details, see the Ordering Information section in DS890, UltraScale Architecture and Product Overview.
6. See UG575, UltraScale Architecture Packaging and Pinouts User Guide for more information.
7. GTH transceivers in A784, A676, and A900 packages support data rates up to 12.5Gb/s.
8. 0.8mm ball pitch. All other packages listed 1mm ball pitch.


